Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 1 entries in the Bibliography.


Showing entries from 1 through 1


2015

Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms

Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87\% of the storms, 0.3\textendash2.5 MeV electron fluxes show an increase, whereas 2.5\textendash14 MeV electron fluxes increase in only 35\% of the storms. Superposed epoch analyses suggest that such \textquotedblleftenergy-dependent\textquotedblright responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux dropouts during storm main phases do not correlate well with the flux buildup during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provides a viable candidate for the energy-dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

Xiong, Ying; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Chen, Lunjin; Ni, Binbin; Li, Wen; Li, Jinxing; Guo, Ruilong; Parks, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021440

energy dependence; Geomagnetic storm; Radiation belts; relativistic electrons; Solar wind



  1